Heat Shock Transcription Factor 1-Deficiency Attenuates Overloading-Associated Hypertrophy of Mouse Soleus Muscle
نویسندگان
چکیده
Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (p<0.05). Significant up-regulations of interleukin (IL)-1β and tumor necrosis factor mRNAs were observed in HSF1-null, but not in wild-type, mice following 2 weeks of overloading. Overloading-related increases of IL-6 and AFT3 mRNA expressions seen after 2 weeks of overloading tended to decrease after 4 weeks in both types of mice. In HSF1-null mice, however, the significant overloading-related increase in the expression of IL-6, not ATF3, mRNA was noted even at 4th week. Inhibition of muscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.
منابع مشابه
Regeneration of injured skeletal muscle in heat shock transcription factor 1-null mice
The purpose of this study was to investigate a role of heat shock transcription factor 1 (HSF1)-mediated stress response during regeneration of injured soleus muscle by using HSF1-null mice. Cardiotoxin (CTX) was injected into the left muscle of male HSF1-null and wild-type mice under anesthesia with intraperitoneal injection of pentobarbital sodium. Injection of physiological saline was also p...
متن کاملA possible role of NF-kappaB and HSP72 in skeletal muscle hypertrophy induced by heat stress in rats.
Effects of heat stress on phosphorylated nuclear factor-kappaB (phospho-NF-kappaB) and tumor necrosis factor alpha (TNFalpha) contents in skeletal muscles were studied. Male Wistar rats (7-week-old) were randomly assigned to control and heat-stressed groups. Rats in heat-stressed group were exposed to heat stress (42 degrees C for 60 min) in an incubator without anesthesia. Soleus muscles were ...
متن کاملAbsence of heat shock transcription factor 1 retards the regrowth of atrophied soleus muscle in mice.
Effects of heat shock transcription factor 1 (HSF1) gene on the regrowth of atrophied mouse soleus muscles were studied. Both HSF1-null and wild-type mice were subjected to continuous hindlimb suspension for 2 wk followed by 4 wk of ambulation recovery. There was no difference in the magnitude of suspension-related decrease of muscle weight, protein content, and the cross-sectional area of musc...
متن کاملThe Impact of Hyperthermia on Receptor-Mediated Interleukin-6 Regulation in Mouse Skeletal Muscle
In inflammatory cells, hyperthermia inhibits lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) gene expression and protein secretion. Since hyperthermia alone stimulates IL-6 in skeletal muscle, we hypothesized that it would amplify responses to other receptor-mediated stimuli. IL-6 regulation was tested in C2C12 myotubes and in soleus during treatment with epinephrine (EPI) or LPS. In EPI-...
متن کاملLoading‐associated expression of TRIM72 and caveolin‐3 in antigravitational soleus muscle in mice
Effects of mechanical loading on the expression level of tripartite motif-containing 72 (TRIM72) and caveolin-3 (Cav-3) in mouse soleus muscle were investigated. Mice were subjected to (1) continuous hindlimb suspension (HS) for 2 weeks followed by 1-week ambulation recovery or (2) functional overloading (FO) on the soleus by cutting the distal tendons of the plantaris and gastrocnemius muscles...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013